
MKA06P260LK-CH

P-Channel Enhancement Mode MOSFET

Features

- AEC-Q101 Qualified
- Surface-mounted package
- Built-in G-S Protection Diode
- Halogen and Antimony Free(HAF), RoHS compliant
- Typical ESD Protection HBM Class 2

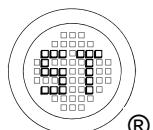
Classification	Voltage Range(V)
0A	< 125
0B	125 to < 250
1A	250 to < 500
1B	500 to < 1000
1C	1000 to < 2000
2	2000 to < 4000
3A	4000 to < 8000
3B	≥ 8000

1. Gate 2. Source 3. Drain
SOT-23 Plastic Package

Applications

- Portable appliances
- Battery management

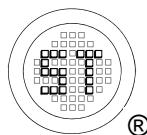
Absolute Maximum Ratings(at $T_a = 25^\circ\text{C}$ unless otherwise specified)


Parameter	Symbol	Value	Unit
Drain-Source Voltage	$-V_{DS}$	60	V
Gate-Source Voltage	V_{GS}	± 20	V
Continuous Drain Current	$-I_D$	2	A
Pulsed Drain Current ¹⁾	$-I_{DM}$	8	A
Total Power Dissipation ²⁾	P_{tot}	540	mW
Operating Junction and Storage Temperature Range	T_J, T_{stg}	- 55 to + 150	°C

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient ²⁾	$R_{\theta JA}$	231	°C/W

¹⁾ Pulse Test: Pulse Width $\leq 100 \mu\text{s}$, Duty Cycle $\leq 2\%$, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^\circ\text{C}$.


²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

MKA06P260LK-CH

Characteristics at $T_a = 25^\circ\text{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at $-I_D = 250 \mu\text{A}$	$-V_{(\text{BR})\text{DSS}}$	60	-	-	V
Drain-Source Leakage Current at $-V_{\text{DS}} = 60 \text{ V}$	$-I_{\text{DSS}}$	-	-	1	μA
Gate-Source Leakage at $V_{\text{GS}} = \pm 20 \text{ V}$	I_{GSS}	-	-	± 10	μA
Gate-Source Threshold Voltage at $V_{\text{DS}} = V_{\text{GS}}$, $-I_D = 250 \mu\text{A}$	$-V_{\text{GS}(\text{th})}$	1	-	3	V
Drain-Source On-State Resistance at $-V_{\text{GS}} = 10 \text{ V}$, $-I_D = 2 \text{ A}$ at $-V_{\text{GS}} = 4.5 \text{ V}$, $-I_D = 2 \text{ A}$	$R_{\text{DS}(\text{on})}$	-	-	190 260	$\text{m}\Omega$
DYNAMIC PARAMETERS					
Forward Transconductance at $-V_{\text{DS}} = 5 \text{ V}$, $-I_D = 2 \text{ A}$	g_{fs}	-	6	-	S
Gate resistance at $V_{\text{GS}} = 0 \text{ V}$, $V_{\text{DS}} = 0 \text{ V}$, $f = 1 \text{ MHz}$	R_g	-	9.2	-	Ω
Input Capacitance at $V_{\text{GS}} = 0 \text{ V}$, $-V_{\text{DS}} = 30 \text{ V}$, $f = 1 \text{ MHz}$	C_{iss}	-	361	-	pF
Output Capacitance at $V_{\text{GS}} = 0 \text{ V}$, $-V_{\text{DS}} = 30 \text{ V}$, $f = 1 \text{ MHz}$	C_{oss}	-	25	-	pF
Reverse Transfer Capacitance at $V_{\text{GS}} = 0 \text{ V}$, $-V_{\text{DS}} = 30 \text{ V}$, $f = 1 \text{ MHz}$	C_{rss}	-	20	-	pF
Total Gate Charge at $-V_{\text{GS}} = 10 \text{ V}$, $-V_{\text{DS}} = 30 \text{ V}$, $-I_D = 2 \text{ A}$ at $-V_{\text{GS}} = 4.5 \text{ V}$, $-V_{\text{DS}} = 30 \text{ V}$, $-I_D = 2 \text{ A}$	Q_g	- -	7 3.2	-	nC
Gate-Source Charge at $-V_{\text{GS}} = 10 \text{ V}$, $-V_{\text{DS}} = 30 \text{ V}$, $-I_D = 2 \text{ A}$	Q_{gs}	-	1.6	-	nC
Gate-Drain Charge at $-V_{\text{GS}} = 10 \text{ V}$, $-V_{\text{DS}} = 30 \text{ V}$, $-I_D = 2 \text{ A}$	Q_{gd}	-	1.3	-	nC
Turn-On Delay Time at $-V_{\text{GS}} = 10 \text{ V}$, $-V_{\text{DD}} = 30 \text{ V}$, $-I_D = 2 \text{ A}$, $R_G = 3.3 \Omega$	$t_{\text{d}(\text{on})}$	-	5.7	-	ns
Turn-On Rise Time at $-V_{\text{GS}} = 10 \text{ V}$, $-V_{\text{DD}} = 30 \text{ V}$, $-I_D = 2 \text{ A}$, $R_G = 3.3 \Omega$	t_r	-	3.4	-	ns
Turn-Off Delay Time at $-V_{\text{GS}} = 10 \text{ V}$, $-V_{\text{DD}} = 30 \text{ V}$, $-I_D = 2 \text{ A}$, $R_G = 3.3 \Omega$	$t_{\text{d}(\text{off})}$	-	7.5	-	ns
Turn-Off Fall Time at $-V_{\text{GS}} = 10 \text{ V}$, $-V_{\text{DD}} = 30 \text{ V}$, $-I_D = 2 \text{ A}$, $R_G = 3.3 \Omega$	t_f	-	1.8	-	ns
Body-Diode PARAMETERS					
Body Diode Voltage at $-I_s = 1 \text{ A}$, $V_{\text{GS}} = 0 \text{ V}$	$-V_{\text{SD}}$	-	-	1.2	V
Body-Diode Continuous Current	$-I_s$	-	-	2	A
Body Diode Reverse Recovery Time at $-I_s = 2 \text{ A}$, $di/dt = 100 \text{ A} / \mu\text{s}$	t_{rr}	-	8	-	ns
Body Diode Reverse Recovery Charge at $-I_s = 2 \text{ A}$, $di/dt = 100 \text{ A} / \mu\text{s}$	Q_{rr}	-	3.6	-	nC

Electrical Characteristics Curves

Fig. 1 Typical Output Characteristics

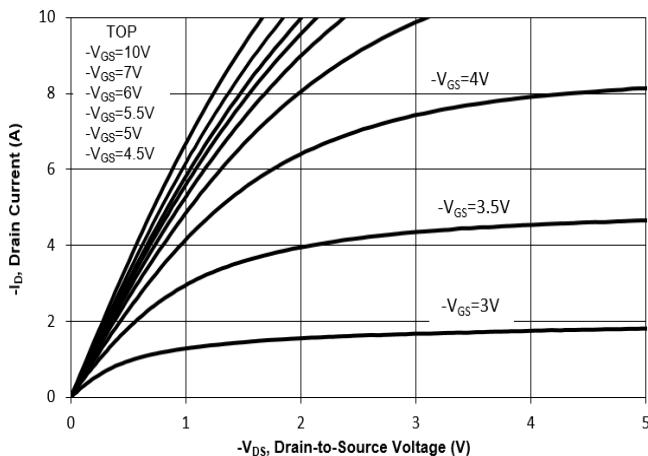


Fig. 2 Typical Transfer Characteristics

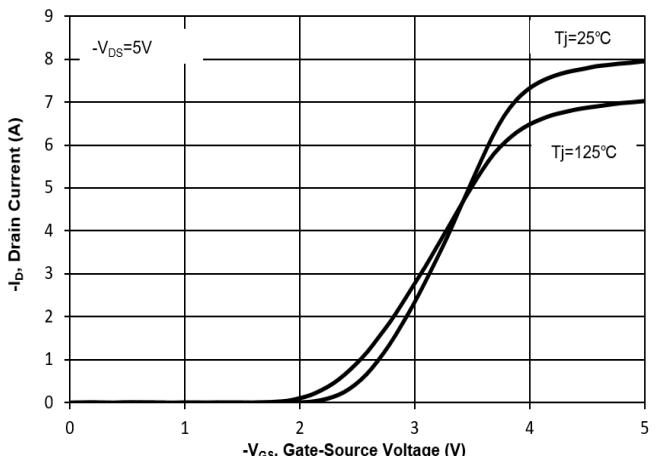


Fig. 3 on-Resistance vs. Drain Current

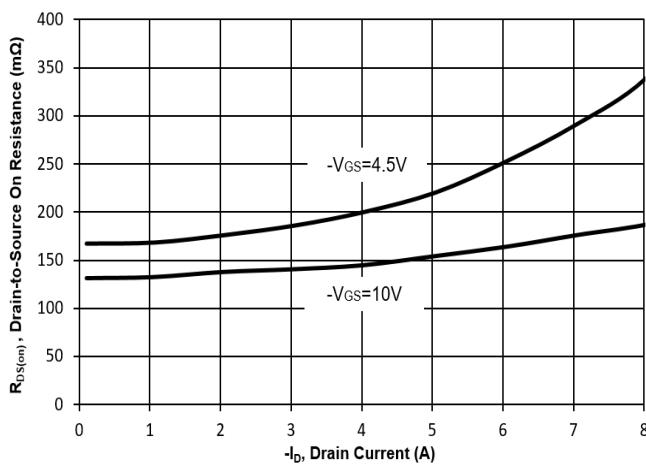


Fig. 4 on-Resistance vs. Gate-Source Voltage

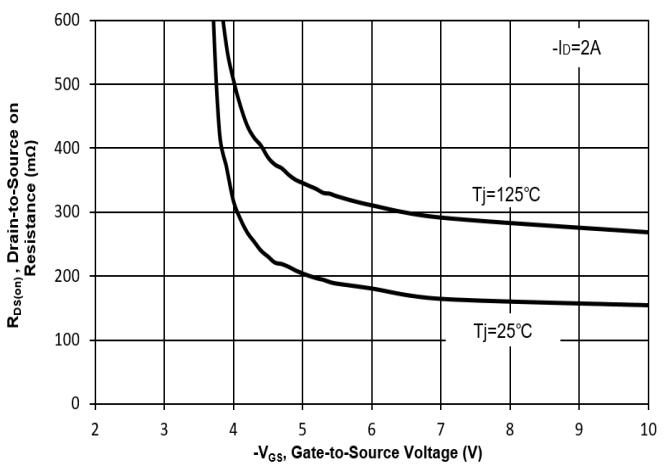


Fig. 5 on-Resistance vs. T_j

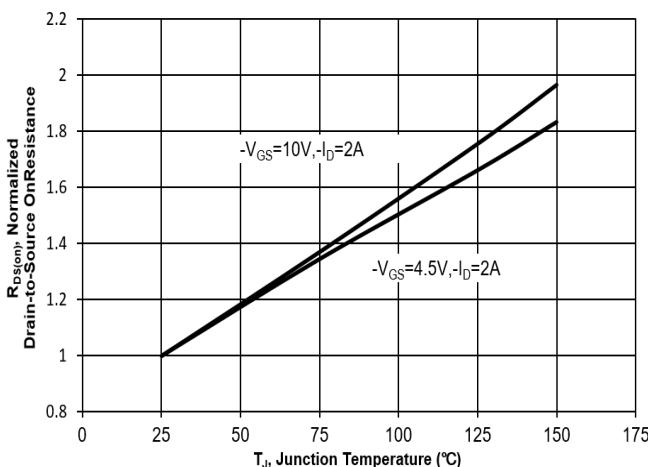
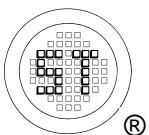



Fig. 6 Typical Body-Diode Forward Characteristics

Electrical Characteristics Curves

Fig. 7 Typical Junction Capacitance

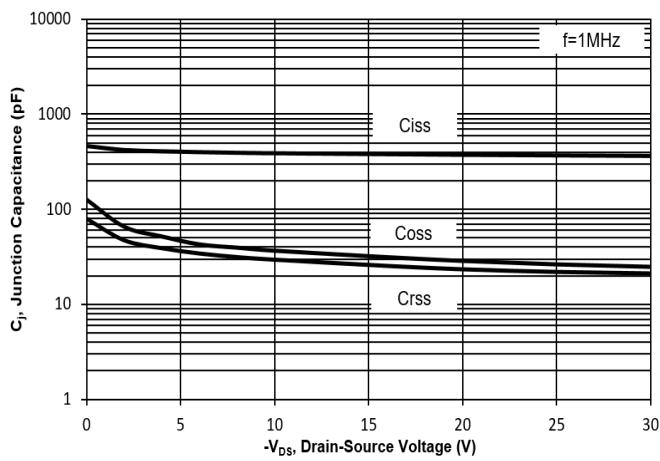


Fig. 8 Drain-Source Leakage Current vs. T_j

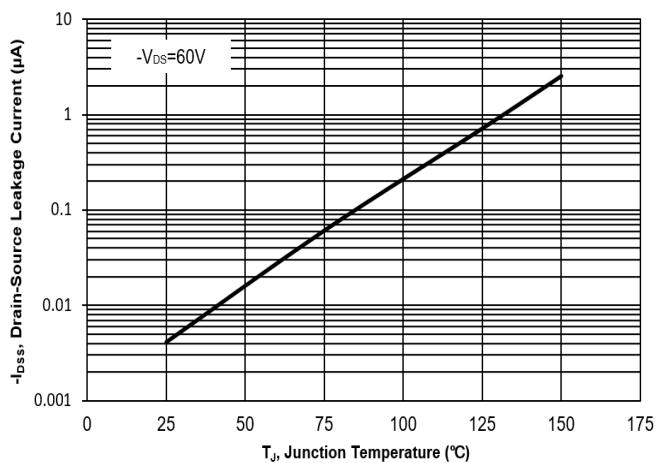


Fig. 9 $V_{(BR)DSS}$ vs. Junction Temperature

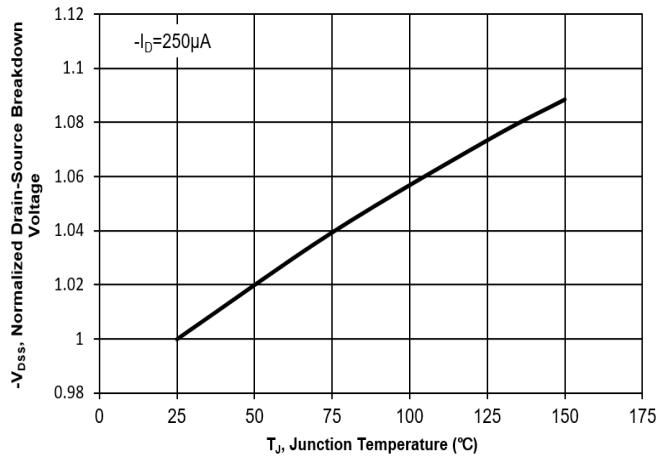


Fig. 10 Gate Threshold Variation vs. T_j

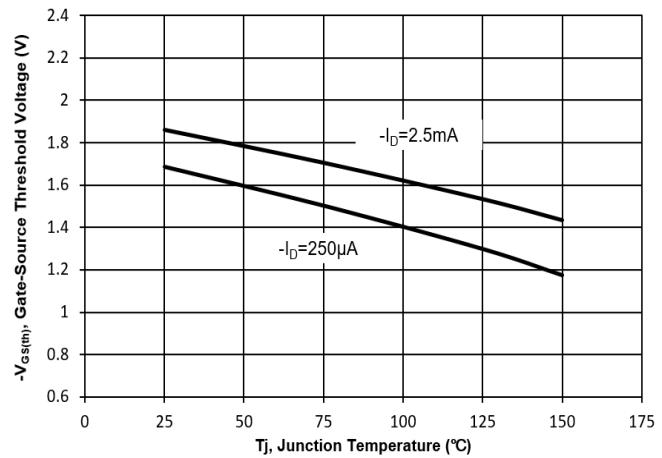
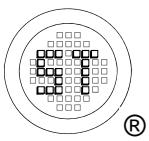
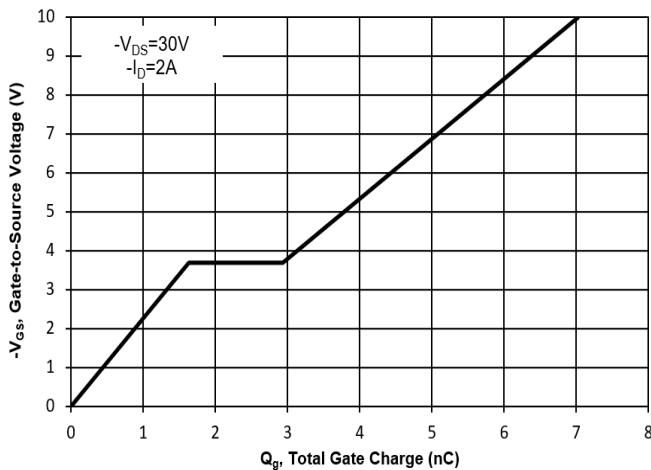




Fig. 11 Gate Charge

Test Circuits

Fig.1-1 Switching times test circuit

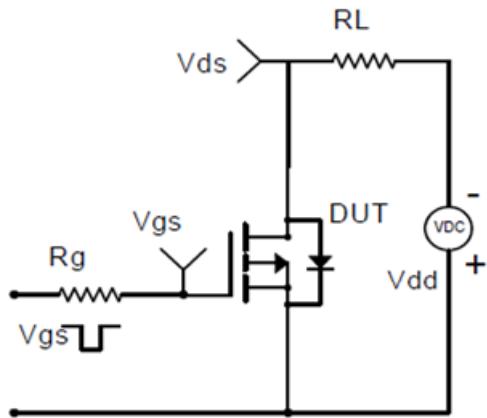


Fig.1-2 Switching Waveform

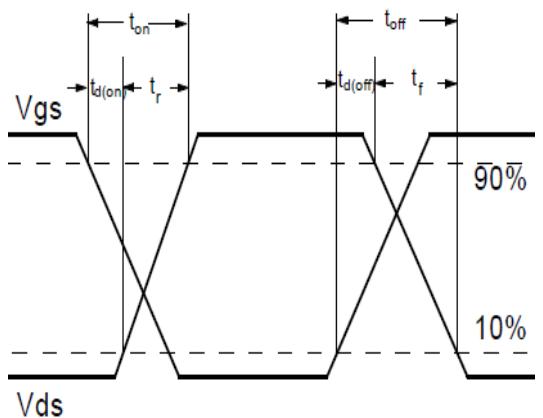
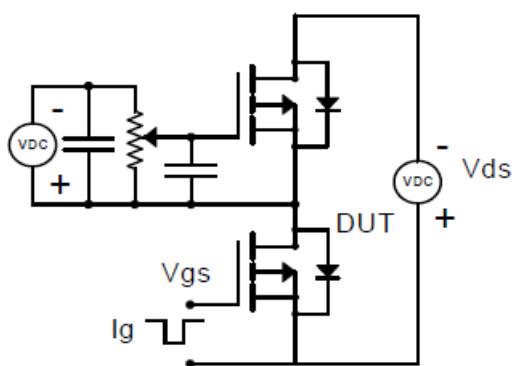
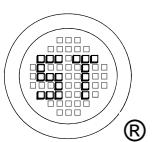
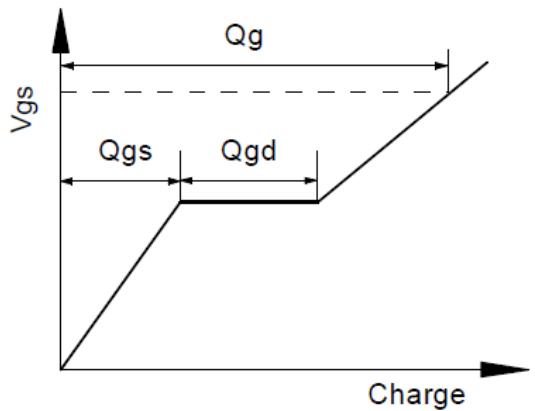
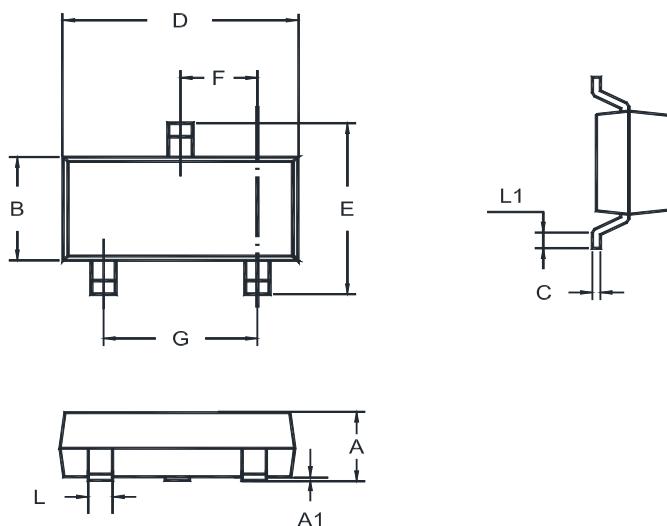
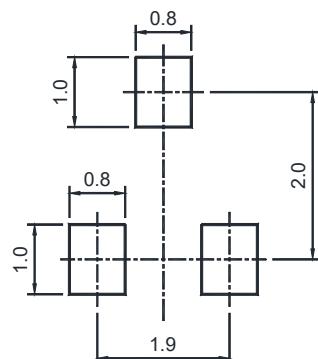


Fig.2-1 Gate charge test circuit


Fig.2-2 Gate charge waveform

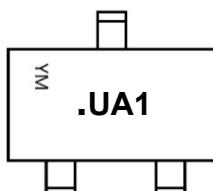
MKA06P260LK-CH


Package Outline (Dimensions in mm)

SOT-23

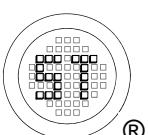
Unit	A	A1	B	C	D	E	F	G	L	L1
mm	1.20	0.100	1.40	0.19	3.04	2.6	1.02	2.04	0.51	0.2
	0.89	0.013	1.20	0.08	2.80	2.2	0.89	1.78	0.37	MIN

Recommended Soldering Footprint



Packing information

Package	Tape Width (mm)	Pitch		Reel Size		Per Reel Packing Quantity
		mm	inch	mm	inch	
SOT-23	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000


Marking information

- " UA1 " = Part No.
- " • " = HAF (Halogen and Antimony Free)
- " YM " = Date Code Marking
- " Y " = Year
- " M " = Month

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

